If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150^2+b^2=840^2
We move all terms to the left:
150^2+b^2-(840^2)=0
We add all the numbers together, and all the variables
b^2-683100=0
a = 1; b = 0; c = -683100;
Δ = b2-4ac
Δ = 02-4·1·(-683100)
Δ = 2732400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2732400}=\sqrt{3600*759}=\sqrt{3600}*\sqrt{759}=60\sqrt{759}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{759}}{2*1}=\frac{0-60\sqrt{759}}{2} =-\frac{60\sqrt{759}}{2} =-30\sqrt{759} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{759}}{2*1}=\frac{0+60\sqrt{759}}{2} =\frac{60\sqrt{759}}{2} =30\sqrt{759} $
| 6m+3–2m=-13 | | 3=1.6x+1 | | 49p^2+371p-163=7 | | 5+(x+7)=33 | | 5(x+2)–x=2x–8 | | 71-1+20x+90=180 | | u/5=30 | | 3/4z-1/4z+1=2/4z=1 | | 7v-11=7v=11 | | /0.5p-3.45=-1.2 | | 9x+34=52 | | 93=r+21 | | (d-2)(d+6)(d+8)=0 | | 3y+72=3y+72 | | (x+7)•6=56/4x | | 2x+1x+41=180 | | 3.5-12.25=y | | c+636=447 | | -2y+14=22 | | -10+4m=6+2, | | 3p–8(p+2)=6–(p+2) | | 3(4-5y/2)+4y=-1 | | x2+x-32=0 | | y+18=114 | | 7u=896 | | 2x-20+2x+10+x=540 | | 14x+7=72+2x-6 | | F(-5)=6x^2-4 | | w+30=96 | | b/14=3;b=42 | | -2+x/3=-23 | | 2(6+x)=14+2 |